summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/nvnflinger/hardware_composer.cpp
blob: 02215a786019f8888a8eda71e4e89b76bdbd3d27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later

#include <boost/container/small_vector.hpp>

#include "common/microprofile.h"
#include "core/hle/service/nvdrv/devices/nvdisp_disp0.h"
#include "core/hle/service/nvnflinger/buffer_item.h"
#include "core/hle/service/nvnflinger/buffer_item_consumer.h"
#include "core/hle/service/nvnflinger/hardware_composer.h"
#include "core/hle/service/nvnflinger/hwc_layer.h"
#include "core/hle/service/nvnflinger/ui/graphic_buffer.h"

namespace Service::Nvnflinger {

namespace {

s32 NormalizeSwapInterval(f32* out_speed_scale, s32 swap_interval) {
    if (swap_interval <= 0) {
        // As an extension, treat nonpositive swap interval as speed multiplier.
        if (out_speed_scale) {
            *out_speed_scale = 2.f * static_cast<f32>(1 - swap_interval);
        }

        swap_interval = 1;
    }

    if (swap_interval >= 5) {
        // As an extension, treat high swap interval as precise speed control.
        if (out_speed_scale) {
            *out_speed_scale = static_cast<f32>(swap_interval) / 100.f;
        }

        swap_interval = 1;
    }

    return swap_interval;
}

} // namespace

HardwareComposer::HardwareComposer() = default;
HardwareComposer::~HardwareComposer() = default;

u32 HardwareComposer::ComposeLocked(f32* out_speed_scale, Display& display,
                                    Nvidia::Devices::nvdisp_disp0& nvdisp) {
    boost::container::small_vector<HwcLayer, 2> composition_stack;

    // Set default speed limit to 100%.
    *out_speed_scale = 1.0f;

    // Determine the number of vsync periods to wait before composing again.
    std::optional<s32> swap_interval{};
    bool has_acquired_buffer{};

    // Acquire all necessary framebuffers.
    for (auto& layer : display.stack.layers) {
        auto consumer_id = layer.consumer_id;

        // Try to fetch the framebuffer (either new or stale).
        const auto result = this->CacheFramebufferLocked(layer, consumer_id);

        // If we failed, skip this layer.
        if (result == CacheStatus::NoBufferAvailable) {
            continue;
        }

        // If we acquired a new buffer, we need to present.
        if (result == CacheStatus::BufferAcquired) {
            has_acquired_buffer = true;
        }

        const auto& buffer = m_framebuffers[consumer_id];
        const auto& item = buffer.item;
        const auto& igbp_buffer = *item.graphic_buffer;

        // TODO: get proper Z-index from layer
        if (layer.visible) {
            composition_stack.emplace_back(HwcLayer{
                .buffer_handle = igbp_buffer.BufferId(),
                .offset = igbp_buffer.Offset(),
                .format = igbp_buffer.ExternalFormat(),
                .width = igbp_buffer.Width(),
                .height = igbp_buffer.Height(),
                .stride = igbp_buffer.Stride(),
                .z_index = 0,
                .blending = layer.blending,
                .transform = static_cast<android::BufferTransformFlags>(item.transform),
                .crop_rect = item.crop,
                .acquire_fence = item.fence,
            });
        }

        // We need to compose again either before this frame is supposed to
        // be released, or exactly on the vsync period it should be released.
        const s32 item_swap_interval = NormalizeSwapInterval(out_speed_scale, item.swap_interval);

        // TODO: handle cases where swap intervals are relatively prime. So far,
        // only swap intervals of 0, 1 and 2 have been observed, but if 3 were
        // to be introduced, this would cause an issue.
        if (swap_interval) {
            swap_interval = std::min(*swap_interval, item_swap_interval);
        } else {
            swap_interval = item_swap_interval;
        }
    }

    // If any new buffers were acquired, we can present.
    if (has_acquired_buffer) {
        // Sort by Z-index.
        std::stable_sort(composition_stack.begin(), composition_stack.end(),
                         [&](auto& l, auto& r) { return l.z_index < r.z_index; });

        // Composite.
        nvdisp.Composite(composition_stack);
    }

    // Render MicroProfile.
    MicroProfileFlip();

    // Advance by at least one frame.
    const u32 frame_advance = swap_interval.value_or(1);
    m_frame_number += frame_advance;

    // Release any necessary framebuffers.
    for (auto& [layer_id, framebuffer] : m_framebuffers) {
        if (framebuffer.release_frame_number > m_frame_number) {
            // Not yet ready to release this framebuffer.
            continue;
        }

        if (!framebuffer.is_acquired) {
            // Already released.
            continue;
        }

        if (auto* layer = display.FindLayer(layer_id); layer != nullptr) {
            // TODO: support release fence
            // This is needed to prevent screen tearing
            layer->buffer_item_consumer->ReleaseBuffer(framebuffer.item, android::Fence::NoFence());
            framebuffer.is_acquired = false;
        }
    }

    return frame_advance;
}

void HardwareComposer::RemoveLayerLocked(Display& display, ConsumerId consumer_id) {
    // Check if we are tracking a slot with this consumer_id.
    const auto it = m_framebuffers.find(consumer_id);
    if (it == m_framebuffers.end()) {
        return;
    }

    // Try to release the buffer item.
    auto* const layer = display.FindLayer(consumer_id);
    if (layer && it->second.is_acquired) {
        layer->buffer_item_consumer->ReleaseBuffer(it->second.item, android::Fence::NoFence());
    }

    // Erase the slot.
    m_framebuffers.erase(it);
}

bool HardwareComposer::TryAcquireFramebufferLocked(Layer& layer, Framebuffer& framebuffer) {
    // Attempt the update.
    const auto status = layer.buffer_item_consumer->AcquireBuffer(&framebuffer.item, {}, false);
    if (status != android::Status::NoError) {
        return false;
    }

    // We succeeded, so set the new release frame info.
    framebuffer.release_frame_number =
        NormalizeSwapInterval(nullptr, framebuffer.item.swap_interval);
    framebuffer.is_acquired = true;

    return true;
}

HardwareComposer::CacheStatus HardwareComposer::CacheFramebufferLocked(Layer& layer,
                                                                       ConsumerId consumer_id) {
    // Check if this framebuffer is already present.
    const auto it = m_framebuffers.find(consumer_id);
    if (it != m_framebuffers.end()) {
        // If it's currently still acquired, we are done.
        if (it->second.is_acquired) {
            return CacheStatus::CachedBufferReused;
        }

        // Try to acquire a new item.
        if (this->TryAcquireFramebufferLocked(layer, it->second)) {
            // We got a new item.
            return CacheStatus::BufferAcquired;
        } else {
            // We didn't acquire a new item, but we can reuse the slot.
            return CacheStatus::CachedBufferReused;
        }
    }

    // Framebuffer is not present, so try to create it.
    Framebuffer framebuffer{};

    if (this->TryAcquireFramebufferLocked(layer, framebuffer)) {
        // Move the buffer item into a new slot.
        m_framebuffers.emplace(consumer_id, std::move(framebuffer));

        // We succeeded.
        return CacheStatus::BufferAcquired;
    }

    // We couldn't acquire the buffer item, so don't create a slot.
    return CacheStatus::NoBufferAvailable;
}

} // namespace Service::Nvnflinger